πŸ“˜ Chapter 12: Convergence & Divergence of Infinite Series

πŸ” What Is an Infinite Series?

An infinite series is the sum of the terms of an infinite sequence:

\[ \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots \]

βœ… Convergence vs ❌ Divergence

Concept Description
Convergent Series The partial sums approach a finite limit. Example: \( \sum \frac{1}{n^2} \)
Divergent Series The partial sums do not approach a finite limit. Example: \( \sum \frac{1}{n} \)

πŸ” Tests for Convergence

1. Nth-Term Test for Divergence

2. Geometric Series Test

3. p-Series Test

4. Integral Test

If \( f(n) = a_n \) is positive, continuous, and decreasing:

\[ \sum a_n \text{ and } \int f(x)\,dx \text{ both converge or both diverge} \]

5. Comparison Test

6. Limit Comparison Test

If \( \lim_{n \to \infty} \frac{a_n}{b_n} = c \) where \( c > 0 \), then both series behave the same.

7. Ratio Test

Compute \( L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \)

8. Root Test

Compute \( L = \lim_{n \to \infty} \sqrt[n]{|a_n|} \)

πŸ“Š Examples

Example 1: \( \sum \frac{1}{n^2} \)

This is a p-series with \( p = 2 > 1 \) β†’ βœ… Converges

Example 2: \( \sum \frac{1}{n} \)

This is a p-series with \( p = 1 \) β†’ ❌ Diverges (harmonic series)

πŸ“ Practice

Q: Determine whether the series \( \sum \frac{n}{n^2 + 1} \) converges or diverges using the Limit Comparison Test.