📘 Chapter 5: Hermitian & Skew-Hermitian Matrices

🔍 Hermitian Matrix

A complex square matrix \( A \) is Hermitian if: \[ A^\dagger = A \] where \( A^\dagger \) is the conjugate transpose of \( A \).

This means \( A_{ij} = \overline{A_{ji}} \).

↔️ Skew-Hermitian Matrix

A complex square matrix \( A \) is Skew-Hermitian if: \[ A^\dagger = -A \] So \( A_{ij} = -\overline{A_{ji}} \) and all diagonal entries are purely imaginary or zero.

📊 Comparison

PropertyHermitianSkew-Hermitian
Transpose Rule\( A^\dagger = A \)\( A^\dagger = -A \)
Diagonal EntriesRealPure Imaginary or Zero
EigenvaluesRealImaginary

📌 Examples

Hermitian: \[ A = \begin{bmatrix} 3 & 2+i \\ 2-i & 1 \end{bmatrix} \quad \Rightarrow \quad A^\dagger = A \]

Skew-Hermitian: \[ B = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \quad \Rightarrow \quad B^\dagger = -B \]

📝 Practice

Q: Verify whether the matrix \[ C = \begin{bmatrix} 0 & 2+i \\ -2+i & 0 \end{bmatrix} \] is Hermitian, Skew-Hermitian, or neither.