📘 Chapter 1: Introduction to Matrices

A matrix is an array of numbers arranged in rows and columns, like this:

\[ A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \]

🧩 Types of Matrices

🔄 Matrix Operations

Basic matrix operations include addition, multiplication, scalar multiplication, etc.

\[ A + B = \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix} + \begin{bmatrix}5 & 6 \\ 7 & 8\end{bmatrix} = \begin{bmatrix}6 & 8 \\ 10 & 12\end{bmatrix} \]

📊 Examples

Given:

\[ A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix} \Rightarrow A^T = \begin{bmatrix}2 & 4 \\ 3 & 5\end{bmatrix} \]

📝 Practice

Compute the sum:

\[ \begin{bmatrix}3 & 1 \\ 0 & 2\end{bmatrix} + \begin{bmatrix}6 & 2 \\ 1 & 3\end{bmatrix} \]