πŸ“˜ Chapter 2: Inverse and Rank of a Matrix

πŸ” Inverse of a Matrix

Example

\[ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow \det(A) = -2 \]
\[ \text{adj}(A) = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \]

πŸ“ Rank of a Matrix

Example

\[ B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \Rightarrow \text{Row 2} = 2 \cdot \text{Row 1} \Rightarrow \text{rank}(B) = 1 \]

🧠 Key Takeaways

πŸ’‘ Pro Tip: Use Gaussian elimination to find rank *and* inverse efficiently.

πŸ“ Practice Problem

Q: Find the inverse of \[ A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \]

Solution: