π Chapter 2: Inverse and Rank of a Matrix
π Inverse of a Matrix
- The inverse of a matrix \( A \) exists only if \( A \) is square and nonsingular.
- If \( A^{-1} \) exists: \[ A \cdot A^{-1} = A^{-1} \cdot A = I \]
- Methods to compute:
- Adjoint: \( A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A) \)
- GaussβJordan elimination
Example
\[
A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow \det(A) = -2
\]
\[
\text{adj}(A) = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}
\]
π Rank of a Matrix
- Rank is the maximum number of linearly independent rows/columns.
- \( \text{rank}(A) \) is the dimension of the row or column space.
- It helps identify:
- Solvability of systems \( Ax = b \)
- Whether the matrix is invertible
Example
\[ B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \Rightarrow \text{Row 2} = 2 \cdot \text{Row 1} \Rightarrow \text{rank}(B) = 1 \]
π§ Key Takeaways
- If \( \det(A) = 0 \), then \( A^{-1} \) doesnβt exist
- Full rank β invertible β non-zero determinant
- Rank tells us how much information a matrix encodes
π‘ Pro Tip: Use Gaussian elimination to find rank *and* inverse efficiently.
π Practice Problem
Q: Find the inverse of \[ A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \]
Solution:
- \( \det(A) = 5 \)
- \( A^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} \)